Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38610580

RESUMO

This paper contributes to the development of a Next Generation First Responder (NGFR) communication platform with the key goal of embedding it into a smart city technology infrastructure. The framework of this approach is a concept known as SmartHub, developed by the US Department of Homeland Security. The proposed embedding methodology complies with the standard categories and indicators of smart city performance. This paper offers two practice-centered extensions of the NGFR hub, which are also the main results: first, a cognitive workload monitoring of first responders as a basis for their performance assessment, monitoring, and improvement; and second, a highly sensitive problem of human society, the emergency assistance tools for individuals with disabilities. Both extensions explore various technological-societal dimensions of smart cities, including interoperability, standardization, and accessibility to assistive technologies for people with disabilities. Regarding cognitive workload monitoring, the core result is a novel AI formalism, an ensemble of machine learning processes aggregated using machine reasoning. This ensemble enables predictive situation assessment and self-aware computing, which is the basis of the digital twin concept. We experimentally demonstrate a specific component of a digital twin of an NGFR, a near-real-time monitoring of the NGFR cognitive workload. Regarding our second result, a problem of emergency assistance for individuals with disabilities that originated as accessibility to assistive technologies to promote disability inclusion, we provide the NGFR specification focusing on interactions based on AI formalism and using a unified hub platform. This paper also discusses a technology roadmap using the notion of the Emergency Management Cycle (EMC), a commonly accepted doctrine for managing disasters through the steps of mitigation, preparedness, response, and recovery. It positions the NGFR hub as a benchmark of the smart city emergency service.


Assuntos
Desastres , Serviços Médicos de Emergência , Socorristas , Humanos , Cidades , Benchmarking
2.
Brachytherapy ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38538415

RESUMO

PURPOSE: To Demonstrate the clinical validation of a machine learning (ML) model for applicator and interstitial needle prediction in gynecologic brachytherapy through a prospective clinical study in a single institution. METHODS: The study included cervical cancer patients receiving high-dose-rate brachytherapy using intracavitary (IC) or hybrid interstitial (IC/IS) applicators. For each patient, the primary radiation oncologist contoured the high-risk clinical target volume on a pre-brachytherapy MRI, indicated the approximate applicator location, and made a clinical determination of the first fraction applicator. A pre-trained ML model predicted the applicator and IC/IS needle arrangement using tumor geometry. Following the first fraction, ML and radiation oncologist predictions were compared and a replanning study determined the applicator providing optimal organ-at-risk (OAR) dosimetry. The ML-predicted applicator and needle arrangement and the clinical determination were compared to this dosimetric ground truth. RESULTS: Ten patients were accrued from December 2020 to October 2022. Compared to the dosimetrically optimal applicator, both the radiation oncologist and ML had an accuracy of 70%. ML demonstrated better identification of patients requiring IC/IS applicators and provided balanced IC and IC/IS predictions. The needle selection model achieved an average accuracy of 82.5%. ML-predicted needle arrangements matched or improved plan quality when compared to clinically selected arrangements. Overall, ML predictions led to an average total improvement of 2.0 Gy to OAR doses over three treatment fractions when compared to clinical predictions. CONCLUSION: In the context of a single institution study, the presented ML model demonstrates valuable decision-support for the applicator and needle selection process with the potential to provide improved dosimetry. Future work will include a multi-center study to assess generalizability.

3.
Sci Rep ; 13(1): 11000, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419881

RESUMO

Designing efficient and labor-saving prosthetic hands requires powerful hand gesture recognition algorithms that can achieve high accuracy with limited complexity and latency. In this context, the paper proposes a Compact Transformer-based Hand Gesture Recognition framework referred to as [Formula: see text], which employs a vision transformer network to conduct hand gesture recognition using high-density surface EMG (HD-sEMG) signals. Taking advantage of the attention mechanism, which is incorporated into the transformer architectures, our proposed [Formula: see text] framework overcomes major constraints associated with most of the existing deep learning models such as model complexity; requiring feature engineering; inability to consider both temporal and spatial information of HD-sEMG signals, and requiring a large number of training samples. The attention mechanism in the proposed model identifies similarities among different data segments with a greater capacity for parallel computations and addresses the memory limitation problems while dealing with inputs of large sequence lengths. [Formula: see text] can be trained from scratch without any need for transfer learning and can simultaneously extract both temporal and spatial features of HD-sEMG data. Additionally, the [Formula: see text] framework can perform instantaneous recognition using sEMG image spatially composed from HD-sEMG signals. A variant of the [Formula: see text] is also designed to incorporate microscopic neural drive information in the form of Motor Unit Spike Trains (MUSTs) extracted from HD-sEMG signals using Blind Source Separation (BSS). This variant is combined with its baseline version via a hybrid architecture to evaluate potentials of fusing macroscopic and microscopic neural drive information. The utilized HD-sEMG dataset involves 128 electrodes that collect the signals related to 65 isometric hand gestures of 20 subjects. The proposed [Formula: see text] framework is applied to 31.25, 62.5, 125, 250 ms window sizes of the above-mentioned dataset utilizing 32, 64, 128 electrode channels. Our results are obtained via 5-fold cross-validation by first applying the proposed framework on the dataset of each subject separately and then, averaging the accuracies among all the subjects. The average accuracy over all the participants using 32 electrodes and a window size of 31.25 ms is 86.23%, which gradually increases till reaching 91.98% for 128 electrodes and a window size of 250 ms. The [Formula: see text] achieves accuracy of 89.13% for instantaneous recognition based on a single frame of HD-sEMG image. The proposed model is statistically compared with a 3D Convolutional Neural Network (CNN) and two different variants of Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) models. The accuracy results for each of the above-mentioned models are paired with their precision, recall, F1 score, required memory, and train/test times. The results corroborate effectiveness of the proposed [Formula: see text] framework compared to its counterparts.


Assuntos
Gestos , Redes Neurais de Computação , Humanos , Algoritmos , Eletromiografia/métodos , Reconhecimento Psicológico , Mãos
4.
Epidemiol Infect ; 151: e121, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37218612

RESUMO

Human monkeypox (mpox) virus is a viral zoonosis that belongs to the Orthopoxvirus genus of the Poxviridae family, which presents with similar symptoms as those seen in human smallpox patients. Mpox is an increasing concern globally, with over 80,000 cases in non-endemic countries as of December 2022. In this review, we provide a brief history and ecology of mpox, its basic virology, and the key differences in mpox viral fitness traits before and after 2022. We summarize and critique current knowledge from epidemiological mathematical models, within-host models, and between-host transmission models using the One Health approach, where we distinguish between models that focus on immunity from vaccination, geography, climatic variables, as well as animal models. We report various epidemiological parameters, such as the reproduction number, R0, in a condensed format to facilitate comparison between studies. We focus on how mathematical modelling studies have led to novel mechanistic insight into mpox transmission and pathogenesis. As mpox is predicted to lead to further infection peaks in many historically non-endemic countries, mathematical modelling studies of mpox can provide rapid actionable insights into viral dynamics to guide public health measures and mitigation strategies.


Assuntos
Saúde Única , Animais , Humanos , Ecologia , Estudos Epidemiológicos , Modelos Epidemiológicos , Geografia , /epidemiologia
5.
Med Phys ; 49(6): 3585-3596, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35442533

RESUMO

PURPOSE: The purpose of this analysis is to predict worsening post-treatment normal tissue toxicity in patients undergoing accelerated partial breast irradiation (APBI) therapy and to quantitatively identify which diagnostic, anatomical, and dosimetric features are contributing to these outcomes. METHODS: A retrospective study of APBI treatments was performed using 32 features pertaining to various stages of the patient's treatment journey. These features were used to inform and construct a Bayesian network (BN) based on both statistical analysis of feature distributions and relative clinical importance. The target feature for prediction was defined as a measurable worsening of telangiectasia, subcutaneous tissue induration, or fibrosis when compared against the observed baseline. Parameter learning for the network was performed using data from the 299 patients included in the ACCEL trial and predictive performance was measured. Feature importance for the BN was quantified using a novel information-theoretic approach. RESULTS: Cross-validated performance of the BN for predicting toxicity was consistently higher when compared against conventional machine learning (ML) techniques. The measured BN receiver operating characteristic area under the curve was 0.960 ± $\,{\pm}\,$ 0.013 against the best ML result of 0.942 ± $\,{\pm}\,$ 0.021 using five-fold cross-validation with separate test data across 100 trials. The volume of the clinical target volume, gross target volume, and baseline toxicity measurements were found to have the highest feature importance and mutual dependence with normal tissue toxicity in the network, representing the strongest contribution to patient outcomes. CONCLUSIONS: The BN outperformed conventional ML techniques in predicting tissue toxicity outcomes and provided deeper insight into which features are contributing to these outcomes.


Assuntos
Neoplasias da Mama , Mama , Teorema de Bayes , Mama/efeitos da radiação , Neoplasias da Mama/radioterapia , Feminino , Humanos , Aprendizado de Máquina , Curva ROC , Estudos Retrospectivos
7.
Front Oncol ; 11: 611437, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747926

RESUMO

Purpose: To develop and validate a preliminary machine learning (ML) model aiding in the selection of intracavitary (IC) versus hybrid interstitial (IS) applicators for high-dose-rate (HDR) cervical brachytherapy. Methods: From a dataset of 233 treatments using IC or IS applicators, a set of geometric features of the structure set were extracted, including the volumes of OARs (bladder, rectum, sigmoid colon) and HR-CTV, proximity of OARs to the HR-CTV, mean and maximum lateral and vertical HR-CTV extent, and offset of the HR-CTV centre-of-mass from the applicator tandem axis. Feature selection using an ANOVA F-test and mutual information removed uninformative features from this set. Twelve classification algorithms were trained and tested over 100 iterations to determine the highest performing individual models through nested 5-fold cross-validation. Three models with the highest accuracy were combined using soft voting to form the final model. This model was trained and tested over 1,000 iterations, during which the relative importance of each feature in the applicator selection process was determined. Results: Feature selection indicated that the mean and maximum lateral and vertical extent, volume, and axis offset of the HR-CTV were the most informative features and were thus provided to the ML models. Relative feature importances indicated that the HR-CTV volume and mean lateral extent were most important for applicator selection. From the comparison of the individual classification algorithms, it was found that the highest performing algorithms were tree-based ensemble methods - AdaBoost Classifier (ABC), Gradient Boosting Classifier (GBC), and Random Forest Classifier (RFC). The accuracy of the individual models was compared to the voting model for 100 iterations (ABC = 91.6 ± 3.1%, GBC = 90.4 ± 4.1%, RFC = 89.5 ± 4.0%, Voting Model = 92.2 ± 1.8%) and the voting model was found to have superior accuracy. Over the final 1,000 evaluation iterations, the final voting model demonstrated a high predictive accuracy (91.5 ± 0.9%) and F1 Score (90.6 ± 1.1%). Conclusion: The presented model demonstrates high discriminative performance, highlighting the potential for utilization in informing applicator selection prospectively following further clinical validation.

8.
IEEE Access ; 8: 148779-148792, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34812347

RESUMO

Biometrics and biometric-enabled decision support systems (DSS) have become a mandatory part of complex dynamic systems such as security checkpoints, personal health monitoring systems, autonomous robots, and epidemiological surveillance. Risk, trust, and bias (R-T-B) are emerging measures of performance of such systems. The existing studies on the R-T-B impact on system performance mostly ignore the complementary nature of R-T-B and their causal relationships, for instance, risk of trust, risk of bias, and risk of trust over biases. This paper offers a complete taxonomy of the R-T-B causal performance regulators for the biometric-enabled DSS. The proposed novel taxonomy links the R-T-B assessment to the causal inference mechanism for reasoning in decision making. Practical details of the R-T-B assessment in the DSS are demonstrated using the experiments of assessing the trust in synthetic biometric and the risk of bias in face biometrics. The paper also outlines the emerging applications of the proposed approach beyond biometrics, including decision support for epidemiological surveillance such as for COVID-19 pandemics.

9.
Sensors (Basel) ; 18(10)2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287787

RESUMO

This paper focuses on gait abnormality type identification-specifically, recognizing antalgic gait. Through experimentation, we demonstrate that detecting an individual's gait type is a viable biometric that can be used along with other common biometrics for applications such as forensics. To classify gait, the gait data is represented by coordinates that reflect the body joint coordinates obtained using a Microsoft Kinect v2 system. Features such as cadence, stride length, and other various joint angles are extracted from the input data. Using approaches such as the dynamic Bayesian network, the obtained features are used to model as well as perform gait type classification. The proposed approach is compared with other classification techniques and experimental results reveal that it is capable of obtaining a 88.68% recognition rate. The results illustrate the potential of using a dynamic Bayesian network for gait abnormality classification.


Assuntos
Teorema de Bayes , Marcha/fisiologia , Algoritmos , Biometria , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...